
A numerical procedure is used to calculate some of the internal free modes of oscillation 
in a two-layer model of Lake Ontario, assuming a uniform equivalent depth. The modes 
fall into two categories, one set resembling Kelvin-type waves and the other resembling 
Poincare-type waves. Observational evidence from Lake Ontario agrees qualitatively with 
the properties of these two types of modes. 

During the summer the Great Lakes are 
stratified and exhibit long wavelength in- 
ternal oscillations. Mortimer (1974) pre- 
sented observations of several types of in- 
ternal waves in the Great Lakes and showed 
that large-scale motions could be modeled 
well by linear shallow-water dynamics. 
Large-scale internal oscillations occur at 
discrete frequencies which depend on the 
physical dimensions of the lake. Knowl- 
edge of the discrete frequencies and asso- 
ciated structures of oscillations can help 
prcdic t temperature and current variations 
in the stratified lake. 

phases. The results revealed an internal 
free oscillation resembling a Kelvin wave, 
which agreed with observed temperature 
oscillations in Lake Biwa. 

As a first approximation, a stratified lake 
is represented by two homogeneous layers 
of uniform depth and slightly different den- 
sity. In this context the dynamics can be 
separated into two components, one corre- 
sponding to a completely homogeneous 
fluid-the barotropic part-and the other 
explicitly dependent on stratification-the 
baroclinic part. This separation reduces 
the system of six partial differential equa- 
tions governing the two-layer dynamics to 
a much simpler system of three equations 
that can apply to either barotropic or baro- 
clinic motion. 

The purpose of this study is to calculate 
explicitly the free baroclinic modes of os- 
cillation of Lake Ontario. Stratification is 
represented by two discrete layers of uni- 
form depth. A numerical procedure is ap- 
plied to a finite difference grid approximat- 
ing the shape of Lake Ontario. In this 
procedure the governing differential op- 
erators are discretized, and the frequencies 
and structures of the baroclinic normal 
modes are calculated numerically. The ad- 
vantage of this approach is that the normal 
modes are determined explicitly, without 
recourse to time series analysis. 

Rao and Schwab (1976) used this method 
to calculate the barotropic free oscillations 
of Lake Ontario. The three lowest modes 
have calculated periods of 5.11, 3.11, and 
2.31 h. The lowest mode consists of a sin- 
gle amphidromic system with cyclonic 
phase progression (counterclockwise in the 
Northern Hemisphere). Higher modes ex- 
hibit an increasing number of amphidromes. 

Kanari ( 1975) used the baroclinic equa- 
tions to calculate the time dependent re- 
sponse of Lake Biwa to idealized wind 
stress. Harmonic analysis of time series 
from grid points in the model showed peaks 
at certain frequencies corresponding to the 
free internal modes of oscillation of the 
lake, The structures of the modes were de- 
termined from spectral amplitudes and 
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The present results for the baroclinic 
case show two distinct types of oscillation. 
One set resembles Kelvin waves with very 
low ( subinertial) frequencies and cyclonic 
progression of phase. The other group has 
frequencies close to, but greater than, the 
inertial frequency and exhibits an ticyclonic 
phase progression. These oscillations cor- 
respond, respectively, to Kelvin and Poin- 
care waves in a channel. Rao ( 1977) 
calculated the baroclinic modes of oscilla- 

Internal free oscillations in Lake Ontario1 

David J. Schwab 
Great Lakes Environmental Research Laboratory, National Oceanic and 
Atmospheric Administration, Ann Arbor, Michigan 48104 

Abstract 

LIMNOLOGY AND OCEANOGRAPIIY 700 JULY 1977, V. 22(4) 



Oscillations in 

tion in a rectangular basin and showed 
that the modes separate into these two dis- 
tinct classes in basins large enough for the 
effect of the earth’s rotation to be dominant. 
Observations of temperature and current 
oscillations in Lake Ontario support the ex- 
istence of these two types of oscillations. 

Method 

The free response of a two-layer system 
can be separated into two independent 
components, one representing the motion 
of an equivalent homogeneous fluid (baro- 
tropic response) and the other charac- 
terizcd by nearly compensating volume 
transports in the upper and lower layer 
(baroclinic response). The method of sep- 
arating the two components as given by 
Charney (1955) is exact only if the upper 
and lower layer equilibrium depths are con- 
stant. This approximation is used here as a 
first-order estimate of the stratification and 
bathymetry of Lake Ontario. The linearized 
equations governing the quasi-static baro- 
tropic and- baroclinic motions in the 
sence of external forcing arc 

(aM/at) - fN = -c2( a{/&), 

(aN/at) + fM = -c2( a[/ay), 

(at/at) + (dM,‘dx) + (aN/ay) = 0. 

ab- 

(1) 

Here M and N are the components of vol- 
ume transport, ([ is surface elevation, c is 
the no-rotation wave velocity, and f is the 
coriolis parameter, twice the angular fre- 
quency of rotation. For the barotropic 
mode, M and N can be taken as transport 
components for the entire water column 
and fl as the fret surface displacement. In 
this case c = (gh)s is the no-rotation phase 
speed of surface gravity waves. The gravi- 
tational constant is g, and the total depth 
is h. When these equations are applied to 
purely baroclinic motion, M and N are the 
lower layer transports and (I is the displace- 
ment of the interface (see Csanady 1971). 
Phase speed for the baroclinic mode is c 
= (g+h, ) l/a, where g” is the gravitational 
constant reduced by the relative density 
difference between the two layers, and h, 
is the equivalent depth of the two-layer 
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system, the product of the individual layer 
depths divided by their sum. The boun- 
dary condition associated with Eq. 1 for 
both barotropic and baroclinic motions is 
that there be no transport normal to the 
shoreline. 

Rao (1977) used a semianalytic pro- 
cedure to solve Eq. 1 for a rectangular ba- 
sin, but, in a basin of irregular geometry, 
the complicated shape prohibits the use of 
this technique. IIowever, the basic theory 
can be cast into a numerical formulation in 
which the differential operators involved 
arc discretized and applied to a grid repre- 
sentation of a lake. This numerical ap- 
proach has been used to calculate the fre- 
quencies and structures of barotropic free 
oscillations in several lakes (Ontario and 
Superior: Rao and Schwab 1976; Michi- 
gan: Rao et al. 1976), but has not been ap- 
plied to baroclinic oscillations. The parts of 
Eq. 1 governing baroclinic motions in the 
case of uniform equivalent depth have the 
same form as the equations solved in the 
references above, but the wave speed is 
greatly reduced. Details of the mathemati- 
cal and numerical procedures for the solu- 
tions found below were explained by Rao 
and Schwab (1976). 

The calculations of the free modes of os- 
cillation governed by Eq. 1 proceed in 
three steps. The first two are numerical 
solutions for the eigenvalues and eigen- 
vectors of two self-adjoint elliptic oper- 
ators related to the irrotational and nondi- 
vergent parts of the flow field. 

Step 1: 

V - hO$a = -Lx& 

h( &$,/&z) = 0 on the boundary. (2) 

Step 2: 

V . h-V$a = -pa+, 

h-%ba = 0 on the boundary. (3) 

These equations are discretized on a nu- 
mcrical grid, and the resulting standard 
cigcnvalue problems are solved on a com- 
puter for the eigenvalues A,, pa and eigen- 
vectors gb,, &(. The space dependent parts 
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Table 1. Calculated frequencies and periods 
of some internal oscillations of Lake Ontario, 

Mode 
number 

Period 

(h) 

1 2.92 x LOm6 -6 598 
2 5.86 x 1.0 298 
3 8.73 -6 x 
4 1.17 x low5 IO 

200 

5 1.44 x lo-5 
149 
121 Kelvin-type 

h I.73 x 1o-5 101 oscillations 

. 
25 8.95 x lo-5 19.5 
26 9.75 x lo-’ 17.9 
27 9.97 x 1o-5 17.5 

- - - - - - - - - --7 - - - - Inertial freqllcncy 
28 1.03 x 10-l 16.9 
29 1.04 x lo-, 16.8 
30 1.05 x IO-[’ 16.7 PoincarGtype 
31 1.06 x 10-i 16.5 oscillations 
32 L.07 16.3 
33 1.08 

x lo-; 
x .LO 16.1 

of the free solutions of Eq. 1 are then ex- 
panded in terms of $a and $a to obtain 

W, NY’ = C POC N).? 

(WN)~=;qa(M,N)a+, 
a 

tl = C rdta, 
a 

where (M, N)a@ = hV+,, (M, N)a’J’ = 
k * V+a, ca = (ha/g) ‘+a. Here k is the ver- 
tical unit vector. 

The space dependent part of the trans- 
port field in Eq. 1 is the sum of the irrota- 
tional and nondivergent parts, i.e. 

(M,N) = (M,N)Q (M,N)% 

The above expansions are substituted for The above expansions are substituted for 
(M, N) and fl in Eq. 1, and the orthogonal- (M, N) and fl in Eq. 1, and the orthogonal- 
ity of the $a and $a functions allows isola- ity of the $a and $a functions allows isola- 
tion of the expansion coefficents (pa, qa, ?+a). tion of the expansion coefficents (pa, qa, ?+a). 
The final step in the process is to solve the The final step in the process is to solve the 
resulting matrix eigenvalue problem for the resulting matrix eigenvalue problem for the 
frequencies ((T) of the free modes and frequencies ((T) of the free modes and 
corresponding expansion coefficient (pa, corresponding expansion coefficient (pa, 
*qa, Ta ). The structures of the free modes *qa, Ta ). The structures of the free modes 
& determined by evaluating the expansion 
for the height field [ in Eq. 4. The com- 

plex variable fI is represented 
amplitude and phase as 

in terms 

c=A(x, y)cos(ut-e), 

where 

A(x,y) = (Re t2 + Im t2)x 

and 

8 = arctan ( Im [/Re {) . 

Results 

of 

The above method was used to solve Eq. 
1 for a discretized model of Lake Ontario. 
Grid squares were 10.2 km on a side. The 
no-rotation wave velocity was chosen as 
c = 43.4 cm s-l, corresponding to an upper 
layer depth of 15.6 m, lower layer depth of 
70.4 m, and a relative density difference be- 
tween layers of 1.50 x 10-3. The expansions 
of dependent variables in Eq. 4 were lim- 
ited by computer memory size to 80 func- 
tions each of the irrotational and nondi- 
vergent type. With this truncation, the 
calculation provided frequencies and struc- 
tures of 80 internal normal modes. 

As indicated in Table 1, the calculated 
frequencies separate into two categories 
which will later be identified as the en- 
closed basin analogues of Kelvin and Poin- 
car6 waves in a channel. The very low fre- 
quencies (cr < f) are all approximately 
integer multiples of the lowest frequency. 
In Fig. 1, structures of the three lowest 
frequency modes are presented in terms of 
the amplitude and phase distribution of the 
height field. Amplitude is normalized so 
that the maximum value is 100. The struc- 
ture of the lowest mode in Lake Ontario 
shows maximum amplitude near the ends 
of the basin and cyclonic phase progres- 
sion. Phase lines are somewhat spread 
near the ends of the basin, indicating a 
higher phase speed. The second and third 
lowest modes represent the same type of 
oscillation with % and % the longitudinal 
wavelength of the lowest mode. The fre- 
quencies of higher Kelvin-type modes in- 
crease as multiples of the lowest frequency. 
Their structures resemble oppositely propa- 
gating Kelvin waves in a channel with 
wavelengths of %, %, %, etc. of twice the 
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basin length. At some stage the structures 
become too complicated to resolve on the 
numerical grid, and the successive calcu- 
lated frequencies no longer follow as strict 
multiples of the lowest. This continues un- 
til the frequency exceeds the inertial fre- 
quency, when suddenly the structures of 
the modes change to anticyclonic amphi- 
dromic systems with long wavelengths- 
the Poincare-type modes. 

The structure of the first mode with fre- 
quency higher than the inertial (not illu- 
strated) is somewhat complicated, but it is 
dominated by anticyclonic phase progres- 
sion. The next three modes (illustrated in 
Fig. 2) are Poincare-type oscillations with 
maximum amplitude generally occurring on 
the north and south shores and with anti- 
cyclonic phase progression. Experience has 
shown that the series expansions in Eq. 4, 
used to determine the structures of the nor- 
mal modes, converge most rapidly for the 
lowest frequencies. At the frequencies of 
the Poincarc-type oscillations, the con- 
vergence is not as rapid, and it was neces- 
sary to numerically smooth the calculated 
structures of the three modes in Fig. 2. 

Discussion 

Comparison with channel solutions-As 
Lake Ontario is an elongated basin, it is in- 
formative to describe some analytic solu- 
tions to Eq. 1 when applied to a channel. 
Some wave solutions for Eq. 1 are periodic 
both in time and in the long channel direc- 
tion. The superposition of two such waves 
propagating oppositely in a rotating chan- 
nel represents a quasi-standing wave, satis- 
fying the boundary condition of vanishing 
normal transport at the channel sides, but 
retaining a nonzero normal transport com- 
poncnt at the ends of the resulting cellular 
structures. Although each such superposi- 
tion is not an exact solution for the free 
oscillations in a closed basin, certain linear 
combinations of the infinite number of 
them do satisfy the longitudinal boundary 
condition, thereby giving an exact solution 
to the closed basin problem. This principle 
was used by Taylor (1920) to model free 
oscillations in rectangular bays and basins. 

Starting with a pair of oppositely propagat- 
ing Kelvin waves of equal wavelength, he 
was able to determine an infinite series of 
Poincare waves which would exactly com- 
pensate for the nonzero longitudinal trans- 
port at transverse boundaries in the chan- 
nel. 

The character of the quasi-standing Kel- 
vin wave is pictured in Fig. 3a in terms of 
amplitude, A, and phase, 8, for f = lo-” s-l, 
a = 30 km (half-width), c = 50 cm s-l, and 
wavenumber k = n/lOa-values appropri- 
ate for the lowest baroclinic mode of this 
type in Lake Ontario. It is not a standing 
wave in the usual sense, since the longi- 
tudinal transports are nonzero at the ends 
of the cell. The main characteristics of the 
wave are the exponential decrease in am- 
plitude away from the sides and the cy- 
clonic progression of phase around an am- 
phidromic point in the center of the cell. 
The lowest mode in Lake Ontario (Fig. la) 
does not exhibit as rapid a decrease in am- 
plitude away from the shores and maximum 
amplitudes occur at the ends of the basin. 
In the numerical procedure applied to Lake 
Ontario, relative wave amplitude is calcu- 
lated at grid square centers, which are all 
at least 5.1 km from shore. This grid reso- 
lution is sufficient to determine the oscil- 
lation frequencies and offshore structures 
of the modes, but in the nearshore zone the 
calculations may not show the initial rapid 
decrease in amplitude. 

The elevation field of the simplest quasi- 
standing Poincarc wave is pictured in Fig. 
3b in terms of A and 0 with the values of 
f, a, c, and k used for the Kelvin wave. As 
with the Kelvin wave, longitudinal trans- 
port does not vanish at the ends of the cell. 
Apparent characteristics are the proximity 
of the frequency to the inertial frequency 
and anticyclonic progression of phase 
around the central amphidromic region, 
The frequency of the Poincarc wave asso- 
ciated with the chosen parameters is about 
3% greater than the inertial frequency, 

The frequency equation for Poincare 
waves in a channel is ( Defant 1961) 

<r2=f2+c2[(n2v2/2a) +k2]. (5) 
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kh) PERIOD 598h 

C b) PERIOD 298 h 

CC) PERIOD 200h 

Fig. 1. Amplitude ( % of max) and phase (in increments of 30”, 0” marked by arrow indicating 
direction of propagation) associated with three lowest calculated Kelvin-type modes in Lake Ontario. 

Here n is an integer which represents the as k = v/L, em/L, 37r/L, etc., the calcu- 
cross-channel nodality of the wave. The lated frequencies correspond very well to 
pictured Poincare wave (Fig. 3b) is the Eq. 5. 
simplest with n = 1. When n = 2, the struc- Comparison with rectangular basin solu- 
ture consists of two amphidromic systems, tions-Although the Kelvin and Poincari: 
each a distance a/4 from the channel sides. wave superpositions only approximate the 
If the longitudinal wavenumbers of the cal- standing wave pattern in a closed elongated 
culated modes in Lake Ontario are taken basin, many of their characteristics can be 
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(a) PERIOD 16.8h 

(b) PERIOD 16.7h 

CC) PERIOD 16.6h 

Fig. 2. Amplitude and phase distribution (as in Fig. 1) for three calculated Poincark-type modes. 

seen in the closed basin free modes of os- 
cillation. Rao (1977) used a semiana- 
lytic method to calculate frequencies and 
structures of free internal oscillations in a 
rectangular basin. At nondimensional rota- 
tion rates corresponding to basin dimen- 
sions, wave speed, and rotation rate used 
above, the free oscillations separate into 

two classes, one set resembling oppositely 
propagating Kelvin waves, with low fre- 
quency ( w < f) and cyclonic progression 
of phase, and the other set resembling Poin- 
care waves, with frequencies very close to, 
but greater than, the inertial frequency and 
anticyclonic propagation of high water. 

In the case of a channel, Kelvin waves 
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a 

b 

Fig. 3. Amplitude and phase distribution (as in Fig. 1) associated with the superposition of (a) 
two oppositely propagating Kelvin waves and (b) two oppositely propagating Poincar& waves. 

have been shown to propagate at the no- 
rotation phase velocity c, implying a fre- 
quency for the quasi-standing Kelvin wave 
in Fig. 3a of (T = rrc/L, where L is the 
length of the cell. The rectangular basin 
solution of Rao (1977) has a frequency 
20% less than this value for parameters 
appropriate to Lake Ontario. The fre- 
quency of the lowest Kelvin-type mode in 
Lake Ontario is about 40% less than the 
channel frequency. The frequency is ap- 
parently decreased by the addition of trans- 
verse boundaries in the rectangular basin 
and further decreased by the irregular 
geometry of Lake Ontario. 

It is somewhat surprising that the first 
calculated mode with frequency greater 
than the inertial is not the lowest Poincare- 
type mode, but Rao’s (1977) calcula- 
tions in rectangular basins show similar re- 
sults for certain basin dimensions and 
density differences. In his results for vari- 
ous nondimensional rotation rates, the fre- 
quency of a certain mode may be slightly 
greater than the inertial frequency but less 
than the frequency of the first Poincare- 
type mode at one rotation rate and then be- 
come subinertial at higher rotation rates 
( corresponding to larger basin dimensions 

or decreased density difference). The 
structure of this type of mode is usually 
quite complicated when its frequency is 
in the vicinity of the inertial frequency. 

Comparison with observations-Internal 
Kelvin-type waves have been observed in 
Lake Ontario by Csanady and Scott ( 1974) 
in two separate episodes during the 1972 
International Field Year on the Great Lakes. 
They noted longshore current reversals 
and isotherm deflection associated with the 
crest of a wave propagating castward 
along the south shore of the lake with an 
estimated propagation speed of 45 cm s-l. 
The lowest Kelvin-type oscillation calcu- 
lated here (see Fig. la) exhibits a propaga- 
tion speed less than 45 cm s-l at the shore- 
line near the middle of the lake (as low as 
15 cm s-l) and higher speed on the ends 
( as much as 75 cm s-l) so that the average 
propagation speed is close to that estimated 
from observations. Such estimates are dif- 
ficult because frictional dissipation de- 
creases the amplitude of the wave, the 
thermal structure of the lake changes, and 
new storms interrupt the progress of a 
wave on this time scale. In view of these 
difficulties, the bracketing of the observed 
phase speed by the calculated minimum 
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Fig. 4. Average power spectra of temperature, E-W current component, and N-S 
nent at 10-m depth during July 1972 (redrawn from Picketi and Richards 1975). 

8.53 h 8.00 h 

0 .05 10 35 
FREQUENCY kycledhl 

.20 -25 

and maximum and the eastward propaga- 
tion of the wave along the south shore 
represent only a qualitative verification. 

Pickett and Richards (1975) presented 
horizontally averaged power spectra of 
temperature and current components at 
various depths in Lake Ontario for the 
month of July 1972 during the International 
Field Year for the Great Lakes. Three of 
the spectra (temperature, north-south cur- 
rent component, east-west current compo- 
nent at 10-m depth) are redrawn here in Fig. 
4 with the spectral density scaled logarith- 
mically so that some of the lower energy 
peaks are more conspicuous. As indicated 
in Table 1, the frequencies of the Poincarc- 
type modes are very close together in the 
range just above the inertial frequency. In 
order to separate the first and second 
modes at 1.03 x 1O-4 and 1.04 x 1O-4 cy s-l 
by standard spectral analysis of tempera- 
ture and current records, an uninterrupted 
record longer than the period of stratifica- 
tion in Lake Ontario would be required. 
Therefore, each of the frequency bands im- 
mediately above the inertial frequency in 
Fig. 4 probably contains energy from sev- 
eral modes so that only the gross distribu- 
tion of energy can be examined. 

The largest peak in the temperature spec- 
trum is for the band centered at 16.70 h. 

current compo- 

Both current components show the greatest 
energy at 17.45 h, closer to the inertial pe- 
riod of Lake Ontario ( 17.35 h), Subsidiary 
peaks are seen in the temperature spectrum 
near the frequency of the semidiurnal tide 
and at periods of 8.53 and 7.68 h. In the 
current spectra there is not much energy at 
the tidal frequency but there are clear 
peaks in both current spectra at 8.53 and 
8.00 h. The primary peak in the tempera- 
ture spectrum is as close as possible to the 
period of the lowest Poincare-type mode 
calculated here. The spectral energy in the 
temperature spectrum then trails off more 
slowly than in the current spectra at fre- 
quencies slightly higher than the inertial. 
The secondary peaks at 8.53 and 7.68 are 
at periods close to half the period of the 
lowest Poincare-type modes with k = T/L 
andn=lorn= 2 (in Eq. 5). The primary 
peak in the current spectra is closer to the 
inertial frequency than that of the lowest 
Poincare-type node. The subsidiary peaks 
in the current spectra are closer to half the 
periods of the lowest Poincare modes with 
n = 1 and n = 2 than half the inertial pe- 
riod. Mortimer ( 1971), examining similar 
secondary peaks in temperature and cur- 
rent spectra from Lake Michigan, suggested 
that the secondary peaks are the result of 
nonlinearities in the temperature and cur- 
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rent signals, causing incrcascs in spectra some of the characteristics of these modes, 
amplitude at multiples of the fundamental but the linear, frictionless theory used here 
frequency involved. The spectra in Fig. 4 provides a first approximation to the natu- 
then seem to show inertial currents not as- ral situation. 
sociatcd with oscillation of the thermocline, 
temperature and current fluctuations at pe- 
riods just less than the inertial period, and 
the first harmonics of 17- and 16-h oscilla- 
tions. 

This evidence is consistent with the cal- 
culatcd periods and structures of the Poin- 
care-type modes. There is energy in sev- 
eral of the Poincare-type modes with 
notably larger amounts in the k = T/L and 
n = 1 or n = 2 modes. Since the periods of 
these modes are so close, limited spectral 
resolution does not permit separation of the 
fundamental frequencies, but the first har- 
monics show a clear split. 

Conclusion 

The caIculated internal free oscilIations 
of Lake Ontario fall into two categories, 
One group has frequencies much less than 
the inertial frequency and structures that 
resemble a pair of Kelvin waves propagat- 
ing cyclonically around the shoreline. The 
frequency of the Kelvin waves is less than 
it would be in a channel, and the amplitude 
decreases more slowly away from shore. 
The other group is similar to quasi-standing 
Poincare waves in a channel. The calcu- 
lated frequencies are very close to, but al- 
ways greater than, the inertial frequency. 
The frequencies can be predicted quite 
well by the frequency equation for Poin- 
car6 waves in a channel. The structures 
show anticyclonic phase progression. Ob- 
servational evidence from Lake Ontario 
(Csanady and Scott 1974; Pickett and 
Richards 1975) agrees qualitatively with 
the propertics of the two types of oscilla- 
tion. The complication of depth variations, 
friction, and nonlinearities no doubt alter 
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